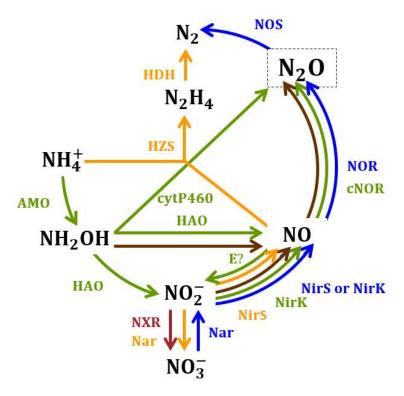


N₂O PRODUCTION AND EMISSIONS IN WWTP

Sara Ekström 2018-12-05

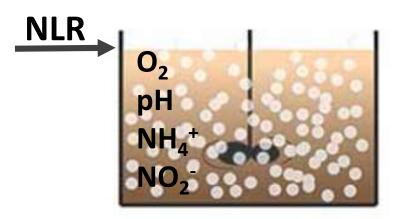
WHY MEASURE N₂O?

- Global warming induced by anthropogenic increases of GHGs
 - **↑**CO₂ 40%
 - 个CH₄ 150% Since 1750s
 - 个N₂O 20% _
- N₂O
 - GWP 298 x CO₂
 - 3.1 GtCO₂eq in 2010
 - 3.5% origniates from WWT


WHY MEASURE N₂O?

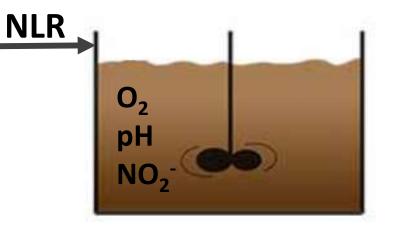
- First full-scale measurements in 1990s
 - 3.2 $gN_2O-N p^{-1}y^{-1} or$
 - 0.035% of TKNin
- Czepiel et al., 1995
- IPPC 2006 calculation factor
- Recent research:
 - N₂O 0.001 -25% of influent N-load
 - 1% ↑N₂O --> 30% ↑C-footprint

HOW IS N₂O PRODUCED IN WWT?


- AOB
- HDN
- Chemical reactions
- Anammox
- **NOB**

PROCESS CONDITIONS PRODUCING N₂O

Nitrification:


- Low DO
- High NO₂-
- Sudden shifts of
 - pH,DO, NH4+
- Transient aerobic conditions
- NH₄⁺ overload
- High NH₄⁺ oxidation rates
- Incomplete nitrification

PROCESS CONDITIONS PRODUCING N₂O

Denitrification:

- Presence of O₂
- Low pH
- Low COD/N ratio
- Type of COD source
- High NO₂-
- Low temperature reduces NO and N₂O reductase activities

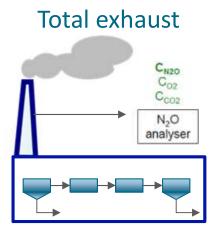
WHERE IS N₂O EMITTED?

LIQUID-GAS MASS TRANSFER

N₂O emission rates governed by the mass transfer coefficient:

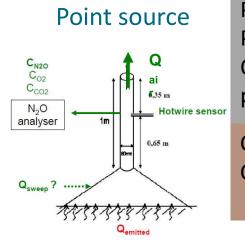
$$k_{L}a_{N_{2}0} = \frac{\frac{Q_{air} \cdot p_{N_{2}0}}{R \cdot T} \cdot MW_{N_{2}0}}{V_{R} \cdot (C_{N_{2}0} - C_{N_{2}0}^{*})} h^{-1}$$

Main external factors influencing N₂O emissions:


1) temp of liquid phase

2) liquid phase N₂O concentration

3) aeration and stirrer effect


MEASUREMENT TECHNIQUES

Gaseous phase

Pros: Entire emissions Online for long periods

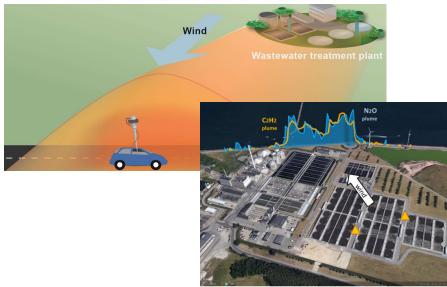
Cons: Not process specific No info on hot spots

Pros: Process specific Online for long periods

Cons: Covers small area

MEASUREMENT TECHNIQUES

Liquid phase


Pros: Insitu dynamics Online for long periods Cons:

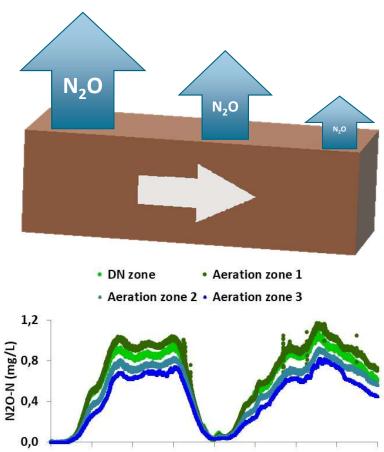
k_La dependent Fragile Temperature dependent Short life time of sensor

MEASUREMENT TEHCNIQUES

Tracer gas dispersion

A. Delre et al. / Science of the Total Environment 605-606 (2017) 258-268

Pros:


Entire WWTP emissions Possible to capture hot spots

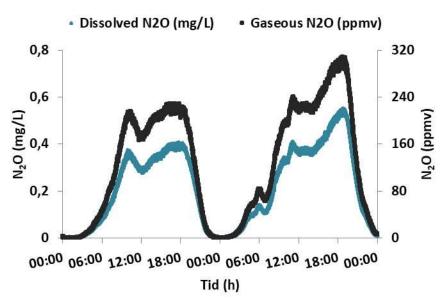
Cons:

Wind dependent Sensitive to background noise Short periods of measurement

SPATIAL VARIATIONS

- Occur due to gradients in:
 - DO, NH4+, NO2-, N-load, MLSS etc
 - Aeration regime
- Characterization to:
 - Correct quantification
 - Illuminate key drivers
 - Identify control measures

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00


TEMPORAL VARIATIONS

DIURNAL

- Reoccurring diurnal pattern as an effect of:
 - influent load, DO, NH4+ oxidation rate, nitrite accumulation etc

SEASONAL

- Huge variations over a year
- Variation with temperature, MLSS, microbial community structure changes

N₂O EMISSIONS IN DIFFERENT CONFIGURATIONS

Main-stream systems

AAO	OD	Plug flow	SBR
• 0.1-3.4%	• 0.03-0.52%	• 0.04-1.9%	• 2.7-6.8%

Reject water systems

PN SBR	PN	PNA
• 3.8-19.3%	• 2.2-6.6%	• 0.4-2.0%

REPRESENTATIVE N₂O EMISSION FACTOR

WHY:

• Enables comparison between WWTP

HOW:

- Online high frequency
- Long term measurement
- Covering representative area/volume

No standard method available

EXPRESSED AS:

- % of N load or
- % of N removed

IMPACT ON TOTAL CARBON FOOTPRINT

WWT system	N2O % of N-load	% of C-footprint	Reference
SBR	6.8%	60%	Rodriguez-Caballero, 2015
Plug-flow	0.04%	13%	Aboobakar, 2013
Covered WWTP	2.8%	78%	Dealman, 2013
AS	0.5%	14%	Delre,2017 & 2019
BioDenipho	0.15-4.7%	48%	Yoshida, 2014 and Delre, 2019

- Mitigation of the N2O emissions can reduce the total C-footprint of a WWTP significantly
- Not only energy use should be regarded

HOW TO MITIGATE N2O EMISSIONS?

- Continuous feeding
- High frequency aeration
- Long SRT
- Large reactor volume
- High MLSS
- Controll NH₄⁺/NO₃⁻ concentrations
- Allow complete nitrification/denitrification
- Engineering the microbial community

THANK YOU FOR THE ATTENTION ③

sara.ekstrom@vasyd.se

