Mitigating N2O Emissions From a Fulls-Scale Anammox Reactor December 2018

Per Henrik Nielsen, Nerea Uri Carreño, Mikkel Holmen, Søren Eriksen phn@vandcenter.dk

Ejby Mølle WWTP

Sidestream anammox at Ejby Mølle

Continuos (not Batch) operation
Volume: 320m³ each
Load: 0,66 kg NH4-N/m³

Demon[™] Hydrocylone for decoupled SRT + "washing"

Background: Liquid N2O on-line measurements and off-gas campaigns

N₂O produced during anoxic phase

Challenge: provide enough oxygen for AOB to use it as electron acceptor, but low enough for simultaneous anammox growth

Continuous aeration:

airflow control based on ammonia feedback + no washing

Control reactor: nitritebased/pH/ time-based intermittent aeration.

Continuous aeration research questions

- Can we keep nitrogen removal with low oxygen concentrations?
- Will NOB out-compete anammox?
- Eliminate nitrifierdenitrification pathway for N2O?
- Size of the granules: key to prevent oxygen inhibition in granules. Effect of stop washing?

Nitrogen removal as %

Does nitrite accumulate?

Will NOB outcompete anammox?

NOB out-selection during continuous aeration

Lower N₂O emissions by continuos aeration

Continuous aeration research answers

- Can we keep nitrogen removal with low oxygen concentrations?
- Will NOB out-compete anammox?
- Eliminate nitrifier-denitrification pathway for N2O?
- Size of the granules: key to prevent oxygen inhibition in granules. Effect of stop washing?

What about "washing" the sludge?

Energy savings from not running washing mode

Conclusions

- Granular nature of anammox allows for simultaneous nitrification-deammonification in a hibrid configuration
- Oxygen always present as preferred electron acceptor for AOBs + nitrite sink = N2O reduction
- Study identified significant operational improvements:
 - 50% lower nitrous oxide emissions on average by running continuos aeration compared to control reactor
 - 15% energy savings by not running the hydrocylone in "washing mode"
 - Less chemical cleaning of the panel diffusers required

Thank you

